skip to main content


Search for: All records

Creators/Authors contains: "Wang, Dongyu S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The role of hydroxyl radicals (OH) as a daytime oxidant is well established on a global scale. In specific source regions, such as the marine boundary layer and polluted coastal cities, other daytime oxidants, such as chlorine atoms (Cl) and even bromine atoms (Br), may compete with OH for the oxidation of volatile organic compounds (VOCs) and/or enhance the overall oxidation capacity of the atmosphere. However, the number of studies investigating halogen-initiated secondary organic aerosol (SOA) formation is extremely limited, resulting in large uncertainties in these oxidative aging processes. Here, we characterized the chemical composition and yield of laboratory SOA generated in an oxidation flow reactor (OFR) from the OH and Cl oxidation of n -dodecane ( n -C 12 ) and toluene, and the OH, Cl, and Br oxidation of isoprene and α-pinene. In the OFR, precursors were oxidized using integrated OH, Cl, and Br exposures ranging from 3.1 × 10 10 to 2.3 × 10 12 , 6.1 × 10 9 to 1.3× 10 12 and 3.2 × 10 10 to 9.7 × 10 12 molecules cm −3 s −1 , respectively. Like OH, Cl facilitated multistep SOA oxidative aging over the range of OFR conditions that were studied. In contrast, the extent of Br-initiated SOA oxidative aging was limited. SOA elemental ratios and mass yields obtained in the OFR studies were comparable to those obtained from OH and Cl oxidation of the same precursors in environmental chamber studies. Overall, our results suggest that alkane, aromatic, and terpenoid SOA precursors are characterized by distinct OH- and halogen-initiated SOA yields, and that while Cl may enhance the SOA formation potential in regions influenced by biogenic and anthropogenic emissions, Br may have the opposite effect. 
    more » « less
  2. Abstract. Aerosol particles have an important role in Earth'sradiation balance and climate, both directly and indirectly throughaerosol–cloud interactions. Most aerosol particles in the atmosphere areweakly charged, affecting both their collision rates with ions and neutralmolecules, as well as the rates by which they are scavenged by other aerosolparticles and cloud droplets. The rate coefficients between ions and aerosolparticles are important since they determine the growth rates and lifetimesof ions and charged aerosol particles, and so they may influence cloudmicrophysics, dynamics, and aerosol processing. However, despite theirimportance, very few experimental measurements exist of charged aerosolcollision rates under atmospheric conditions, where galactic cosmic rays inthe lower troposphere give rise to ion pair concentrations of around 1000 cm−3. Here we present measurements in the CERN CLOUD chamber of therate coefficients between ions and small (<10 nm) aerosol particlescontaining up to 9 elementary charges, e. We find the rate coefficient of asingly charged ion with an oppositely charged particle increases from 2.0(0.4–4.4) × 10−6 cm3 s−1 to 30.6 (24.9–45.1) × 10−6 cm3 s−1 for particles with charges of 1 to9 e, respectively, where the parentheses indicate the ±1σuncertainty interval. Our measurements are compatible with theoreticalpredictions and show excellent agreement with the model ofGatti and Kortshagen (2008). 
    more » « less
  3. Abstract. Currently, the complete chemical characterization of nanoparticles(< 100 nm) represents an analytical challenge, since these particlesare abundant in number but have negligible mass. Several methods forparticle-phase characterization have been recently developed to betterdetect and infer more accurately the sources and fates of sub-100 nmparticles, but a detailed comparison of different approaches is missing.Here we report on the chemical composition of secondary organic aerosol(SOA) nanoparticles from experimental studies of α-pinene ozonolysisat −50, −30, and −10 ∘C and intercompare the results measured by differenttechniques. The experiments were performed at the Cosmics Leaving OUtdoorDroplets (CLOUD) chamber at the European Organization for Nuclear Research(CERN). The chemical composition was measured simultaneously by fourdifferent techniques: (1) thermal desorption–differential mobility analyzer(TD–DMA) coupled to a NO3- chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) massspectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to anI− high-resolution time-of-flight chemical ionization mass spectrometer(HRToF-CIMS), (3) extractive electrospray Na+ ionizationtime-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis offilters (FILTER) using ultra-high-performance liquid chromatography (UHPLC)and heated electrospray ionization (HESI) coupled to an Orbitraphigh-resolution mass spectrometer (HRMS). Intercomparison was performed bycontrasting the observed chemical composition as a function of oxidationstate and carbon number, by estimating the volatility and comparing thefraction of volatility classes, and by comparing the thermal desorptionbehavior (for the thermal desorption techniques: TD–DMA and FIGAERO) andperforming positive matrix factorization (PMF) analysis for the thermograms.We found that the methods generally agree on the most important compoundsthat are found in the nanoparticles. However, they do see different parts ofthe organic spectrum. We suggest potential explanations for thesedifferences: thermal decomposition, aging, sampling artifacts, etc. Weapplied PMF analysis and found insights of thermal decomposition in theTD–DMA and the FIGAERO. 
    more » « less
  4. Abstract. Delhi, India, is the second most populated city in the world and routinely experiences some of the highest particulate matter concentrations of any megacity on the planet, posing acute challenges to public health (World Health Organization, 2018). However, the current understanding of the sources and dynamics of PM pollution in Delhi is limited. Measurements at the Delhi Aerosol Supersite (DAS) provide long-term chemical characterization of ambient submicron aerosol in Delhi, with near-continuous online measurements of aerosol composition. Here we report on source apportionment based on positive matrix factorization (PMF), conducted on 15 months of highly time-resolved speciated submicron non-refractory PM1 (NR-PM1) between January 2017 and March 2018. We report on seasonal variability across four seasons of 2017 and interannual variability using data from the two winters and springs of 2017 and 2018. We show that a modified tracer-based organic component analysis provides an opportunity for a real-time source apportionment approach for organics in Delhi. Phase equilibrium modeling of aerosols using the extended aerosol inorganics model (E-AIM) predicts equilibrium gas-phase concentrations and allows evaluation of the importance of the ventilation coefficient (VC) and temperature in controlling primary and secondary organic aerosol. We also find that primary aerosol dominates severe air pollution episodes, and secondary aerosol dominates seasonal averages. 
    more » « less
  5. Abstract Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O 3 surface concentrations. Although iodic acid (HIO 3 ) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO 3 via reactions (R1) IOIO + O 3  → IOIO 4 and (R2) IOIO 4  + H 2 O → HIO 3  + HOI +  (1) O 2 . The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO 3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation. 
    more » « less
  6. Intense new particle formation events are regularly observed under highly polluted conditions, despite the high loss rates of nucleated clusters. Higher than expected cluster survival probability implies either ineffective scavenging by pre-existing particles or missing growth mechanisms. Here we present experiments performed in the CLOUD chamber at CERN showing particle formation from a mixture of anthropogenic vapours, under condensation sinks typical of haze conditions, up to 0.1 s −1 . We find that new particle formation rates substantially decrease at higher concentrations of pre-existing particles, demonstrating experimentally for the first time that molecular clusters are efficiently scavenged by larger sized particles. Additionally, we demonstrate that in the presence of supersaturated gas-phase nitric acid (HNO 3 ) and ammonia (NH 3 ), freshly nucleated particles can grow extremely rapidly, maintaining a high particle number concentration, even in the presence of a high condensation sink. Such high growth rates may explain the high survival probability of freshly formed particles under haze conditions. We identify under what typical urban conditions HNO 3 and NH 3 can be expected to contribute to particle survival during haze. 
    more » « less
  7. Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35% to 67% RH) relative to dry conditions (under 5% RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime.

     
    more » « less